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Linear Marginal Models - Asymptotic Theory

A marginal linear model is one technique for modelling (continuous) longitudinal data. The
idea is to take the concept of a standard (OLS) regression, which makes the normality
assumption, and extend this to making a multivariate normality assumption. That is,
we assume that Yi ∼ MVN(Xiβ,Σi) for some variance structure, Σi.

Likelihood Theory

Recall that the density of a multivariate normal is given by

f(Y ;µ,Σ) = (2π)−k/2|Σ|−1/2 exp

(
−1

2
(Y − µ)′Σ−1(Y − µ)

)
.

If we assume that µ = Xiβ, we can derive the MLE for β through standard likelihood
arguments.

L(β,Σi) =
n∏

i=1

f(Yi; β,Σi)

ℓ(β,Σi) =
n∑

i=1

log f(Yi; β, σi)

=
n∑

i=1

log

{
(2π)−k/2|Σi|−1/2 exp

(
−1

2
(Yi −Xiβ)

′Σ−1
i (Yi −Xiβ)

)}
=

n∑
i=1

−k

2
log(2π)− 1

2
log |Σi| −

1

2
(Yi −Xiβ)

′Σ−1
i (Yi −Xiβ)

= −nk

2
log(2π)− n

2
log |Σi| −

1

2

n∑
i=1

(Yi −Xiβ)
′Σ−1

i (Yi −Xiβ).

The last equality follows if we assume that Σi is constant for all i.
We can then write down the score function for β as

Sβ =
∂

∂β
ℓ(β,Σi)

= −1

2

n∑
i=1

∂

∂β
(Yi −Xiβ)

′Σ−1
i (Yi −Xiβ)

= −1

2

n∑
i=1

{
−2X ′

iΣ
−1
i (Yi −Xiβ)

}
=

n∑
i=1

XiΣ
−1
i Yi −

n∑
i=1

XiΣ
−1
i Xiβ.

The first terms of the likelihood are all free of β, so they differentiate to zero. The actual
derivative can be taken using the help of the Matrix Cookbook (78), or through multivariate
calculus.
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Solving Sβ = 0 for β̂ gives us the result that

β̂ =

{
n∑

i=1

XiΣ
−1
i Xi

}−1 n∑
i=1

XiΣ
−1
i Yi.

A similar process can be followed to derive the MLE for σ2 (presented as a question on
Assignment 1). For ρ, we typically use profile likelihood, which occurs by forming the

likelihood equation ℓ(β̂, σ̂2, ρ), and maximizing this (numerically) results in an estimate for

ρ̂. We can then substitute the estimated ρ̂ back-in to the estimators for σ̂2 and β̂ to get
numeric values for these.

Finite Sample Bias (Restricted MLE)

If you consider the standard estimator of sample variance, we use (for instance) 1
n−1

∑n
i=1(Xi−

X)2 instead of the MLE (under normality) 1
n

∑n
i=1(Xi −X)2. The reason is that, while the

MLE is asymptotically unbiased and fairly well behaved, it can have appreciable bias in
finite samples. The same is true for the MLE’s of ρ̂ and σ̂2 presented above. While these
estimators are permissible, they are asymptotically unbiased, and will be consistent, if your
sample size is not sufficiently large the estimators will be biased.

As a result, it is advised to use restricted maximum likelihood estimation (REML)
in place of true ML estimation. The idea with REML is that a modified log-likelihood
function is optimized, in place of the true log-likelihood, for the purpose of estimating σ2

and ρ. In particular,

ℓR(σ
2, ρ) = ℓ(β̂, σ2, ρ)− 1

2
log

∣∣∣∣∣
n∑

i=1

X ′
iΣ

−1
i Xi

∣∣∣∣∣ .
Otherwise the procedure is essentially equivalent: estimators are selected which maximize
this, giving σ̃2 and ρ̃, which are then plugged back in to β̂(ρ̃), giving the REML estimator

of β, denoted β̃.

Asymptotic Distribution of β̂

Asymptotically, the MLE (and REML) of β follow N(β, var(β̂)), where

var(β̂) =

[
n∑

i=1

X ′
iΣ

−1
i Xi

]−1

,

and which can be estimated by plugging in the corresponding estimates. We can use this
asymptotic distribution to perform Wald type hypothesis tests, and build Wald type con-
fidence intervals.

In particular, this asymptotic distribution gives us the fact that for every j, β̂j∼̇N(βj, var(β̂)j,j),

where var(β̂)j,j is the j-th diagonal entry of the variance matrix var(β̂). We can then conduct
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inference based on this distribution. In particular:

(β̂j − βj)
2

var(β̂)j,j
∼̇ χ2

1

=⇒ β̂j − βj

s.e.(β̂j)
∼̇ N(0, 1).

We can use these results to perform hypothesis tests of H0 : βj = β∗, where under the

null hypothesis
β̂j−β∗

s.e(β̂j
∼ N(0, 1), and so a p-value can be computed as 2P

(
Z >

|β̂j−β∗|
s.e(β̂j)

)
.

Alternatively, a 100(1−α)% confidence interval can be computed as β̂j ±Zα/2s.e.(β̂j), where
Zα/2 is the upper-tail α/2 percentile of a N(0, 1) random variable.

Asymptotic Distribution of Lβ̂

For the purpose of joint linear hypotheses, or for the purpose of prediction, it is often the
case that we wish to test a hypothesis of the form H0 : Lβ = c for some matrix L. You can
derive (through an argument on quadratic forms) that

(Lβ̂ − Lβ)′
{
L var(β̂)L′

}−1

(Lβ̂ − Lβ) ∼ χ2
r,

where r is the rank of L.
Generally, this result can be used in the same way as the above result, substituting the

N(0, 1) distribution for the relevant χ2 distribution. This strategy is used (for instance)
to test a set of effects equal to zero simultaneously, or to test a set of effects equal to one
another (or equal in ratios to one another). If you take L to be a matrix corresponding to
the variate values for an individual you would like to make predictions about, this can also
serve as a method of performing inference on predictions.

Parameter Interpretations

The interpretations of parameters in marginal linear models is going to be dictated, in large
part, based on the way that time is included in the model. In general, parameter interpre-
tations will take a similar “flavour” to those used in linear regression models. In particular,
recall that marginal models are models for the conditional mean of the outcome, given vari-
ates (E[Yi|Xi]) and so parameter interpretations will be with regards to the expected change
in outcome (based on unit changes in variates, holding all else constant).
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